Proton transfer reaction-mass spectrometry applications in medical research.

نویسندگان

  • Jens Herbig
  • Anton Amann
چکیده

Gathering information about a subject's physiological and pathophysiological condition from the `smell' of breath is an idea that dates back to antiquity. This intriguing concept of non-invasive diagnosis has been revitalized by `exhaled breath analysis' in recent decades. A main driving force was the development of sensitive and versatile gas-chromatographic and mass-spectrometric instruments for trace gas analysis. Ironically, only non-smelling constituents of breath, such as O(2), CO(2), H(2), and NO have so far been included in routine clinical breath analysis. The `smell' of human breath, on the other hand, arises through a combination of volatile organic compounds (VOCs) of which several hundred have been identified to date. Most of these volatiles are systemic and are released in the gas-exchange between blood and air in the alveoli. The concentration of these compounds in the alveolar breath is related to the respective concentrations in blood. Measuring VOCs in exhaled breath allows for screening of disease markers, studying the uptake and effect of medication (pharmacokinetics), or monitoring physiological processes. There is a range of requirements for instruments for the analysis of a complex matrix, such as human breath. Mass-spectrometric techniques are particularly well suited for this task since they offer the possibility of detecting a large variety of interesting compounds. A further requirement is the ability to measure accurately in the concentration range of breath VOCs, i.e. between parts-per-trillion (pptv) and parts-per-million (ppmv) range. In the mid 1990's proton transfer reaction-mass spectrometry (PTR-MS) was developed as a powerful and promising tool for the analysis of VOCs in gaseous media. Soon thereafter these instruments became commercially available to a still growing user community and have now become standard equipment in many fields including environmental research, food and flavour science, as well as life sciences. Their high sensitivity for VOCs with detection limits down to sub-pptv levels without pre-concentration and their highly linear signal response over seven orders of magnitude make PTR-MS instruments valuable tools for exhaled breath analysis. The `soft' chemical ionization process in PTR-MS largely avoids fragmentation, providing interpretable spectra without pre-separation. This is especially important for complex gas mixtures such as breath. Even more interesting, PTR-MS instruments analyse a gas sample in real-time and do not require any sample pre-treatment. This offers the possibility for online breath analysis with breath-to-breath resolution. This special issue on PTR-MS applications in medical research contains articles exploring different medical applications of PTR-MS. These applications include screening studies, where the breath composition of a large number of patients is investigated to, e.g., determine influences of demographic data on breath concentrations (Schwarz et al 2009 J. Breath Res. 3 027003). In online monitoring studies the breath of one subject is continuously measured, e.g., to study rapid changes in breath volatiles under physical exercise (King et al 2009 J. Breath Res. 3 027006). Other papers address more elementary breath research and discuss the interpretation of exhaled breath composition in the presence of fragmenting and overlapping compounds (Schwarz et al 2009 J. Breath Res. 3 027002), examine the different causes of variability in the measurement of breath samples (Thekedar et al 2009 J. Breath Res. 3 027007), and compare blood and breath concentrations directly (O'Hara et al 2009 J. Breath Res. 3 027005). Potential sources for breath markers are also explored, by analysing the head-space emissions from microbial culture samples (O'Hara and Mayhew 2009 J. Breath Res. 3 027001). Finally, a recent technological advancement in PTR-MS technology promises several advantages especially for breath gas analysis, which is demonstrated by on-line breath sampling with a PTR-time-of-flight (PTR-TOF) instrument (Herbig et al 2009 J. Breath Res. 3 027004).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PTR-MS in Italy: A Multipurpose Sensor with Applications in Environmental, Agri-Food and Health Science

Proton Transfer Reaction Mass Spectrometry (PTR-MS) has evolved in the last decade as a fast and high sensitivity sensor for the real-time monitoring of volatile compounds. Its applications range from environmental sciences to medical sciences, from food technology to bioprocess monitoring. Italian scientists and institutions participated from the very beginning in fundamental and applied resea...

متن کامل

Ion/ion chemistry of high-mass multiply charged ions.

Electrospray ionization has enabled the establishment of a new area of ion chemistry research based on the study of the reactions of high-mass multiply charged ions with ions of opposite polarity. The multiple-charging phenomenon associated with electrospray makes possible the generation of multiply charged reactant ions that yield charged products as a result of partial neutralization due to i...

متن کامل

Proton transfer reaction rate constants between hydronium ion (H3O ) and volatile organic compounds

We report proton transfer reaction rate constants between the hydronium ion (H3O ) and selected atmospherically important volatile organic compounds (VOCs). The quantum chemical method was used to determine the structures of the organic species employing the density function theory-B3LYP. The ion–molecule reaction rates were determined using the average-dipole-orientation theory, along with the...

متن کامل

Recent developments in the ion/ion chemistry of high-mass multiply charged ions.

The ability to form multiply charged high-mass ions in the gas-phase, most notably via electrospray ionization (ESI), has allowed the study of many different combinations of positively and negatively charged ions. The charged products are directly amenable to study with mass spectrometry. Ion/ion reactions have proved to be "universal" in the sense that the high exothermicities and large rate c...

متن کامل

Structures of Fluoranthene Reagent Anions Used in Electron Transfer Dissociation and Proton Transfer Reaction Tandem Mass Spectrometry.

Ion/ion reactions have in recent years seen widespread use in ion activation methods such as electron transfer dissociation (ETD) tandem mass spectrometry (MS/MS) as well as in charge manipulation of highly charged peptides/proteins and their fragments by proton transfer reaction (PTR). These techniques have, in combination, enabled top-down proteomics on limited-resolution benchtop mass spectr...

متن کامل

A comparison of spectroscopic techniques for human breath analysis

The analysis of human breath has been driven to new heights and has great potential to impact our society in the area of medical science. Breath analysis is promising as non-invasive, simple and point-of-care clinical measurements to reduce the medical burden caused by invasive, time-consuming and expensive clinical devices. Spectroscopic techniques for breath analysis can offer information to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of breath research

دوره 3 2  شماره 

صفحات  -

تاریخ انتشار 2009